Back to the page
  • Welcome
  • Visit us
    • Visit us
    • Opening times & information
    • Visiting the Garden
    • Ticket Prices
    • Garden map
    • Group Visits
    • Tours
    • Press and photography
    • The Garden Cafe
    • The Garden Shop
  • Accessibility
  • What’s on
  • The Garden
    • The Garden
    • About the Garden
    • Horticultural Collections
    • Understanding Plant Labels
    • History of the Garden
    • Wildlife
    • Plant picks of the week
  • Learning
    • Learning
    • Adult Learning
    • Trails for Adults
    • Schools, Further and Higher Education
    • Family Activities
    • Community Projects
    • Science on Sundays
  • Science
    • Science
    • Our Science Staff
    • Our Staff Publications
    • Your Science
    • Supporting Your Research
  • Collections
    • Collections
    • Living Collections
    • Seed Bank
    • Herbarium
    • Cory Library
    • Archives
    • Living Collections Portal
  • News
  • Support Us
Donate

Lorem ipsum testing

Cambridge University Botanic Garden
menu

Today's Opening Times:
10:00am - 6:00pm

  • News
  • Support Us
  • Contact Us
  • Donate
  • Home
  • Visit us
    • Ticket Prices
    • Opening times & Information
    • Visiting the Garden
    • Garden Map
    • Group Visits
    • Tours
    • Pre-book tickets
    • Press & Photography
    • The Garden Shop
    • The Garden Cafe
    • Accessibility
    • Virtual Visits
  • What’s on
  • The Garden
    • About the Garden
    • Horticultural Collections
    • Understanding Plant Labels
    • History of the Garden
    • Wildlife
    • Plant picks of the week
  • Learning
    • Adult Learning
    • Trails for Adults
    • Schools, Further & Higher Education
    • Family Activities
    • Community Projects
    • Science on Sundays
    • Gardening Club
    • Book a Learning Visit
    • Festival of Plants 2020
    • Cambridge Festival 2021
  • Science
    • Our Science Staff
    • Our Staff Publications
    • Your Science
    • Supported Publications
    • Supporting Your Research
  • Collections
    • Living Collections
    • Herbarium
    • Seed Bank
    • Cory Library
    • Archives
    • Collecting Expeditions
    • National Plant Collections ®
    • Living Collections Portal
  • Wellness Wanders
  • Open search panel
Close search panel
Home Learning Trails for Adults Plant Speciation Trail
Share Created with Sketch.
  • Email Share this with Email
  • Facebook Share this with Facebook
  • Twitter Share this with Twitter
  • Pinterest Share this with Pinterest
  • WhatsApp Share this with WhatsApp
  • Google + Share this with Google plus

Plant Speciation Trail

Plants provide extraordinary opportunities for understanding how one species becomes two.

(This is the online version of the paper booklet available at ticket offices in the Garden.)

In the animal kingdom, a species is often defined as a group of animals which can breed together and produce fertile offspring, but in the plant kingdom things are
more complicated.

This trail takes you on a tour highlighting the processes of speciation, as well as examples of plants used by researchers to investigate how new species arise.

Download the Plant Speciation Trail brochure here.

Giving names to plants and animals

Scientists give names to plants and animals to distinguish them from one another. At first, these names were descriptive – one example being Rosa sylvestris alba cum rubore, folio glabro (‘pinkish-white woodland rose with hairless leaves’) – but as more organisms were discovered, the names started to get even longer and more complicated.
The Swedish botanist Carl Linnaeus realised that these long names were unnecessary: as long as each organism had a unique two-part (‘binomial’) name. Using his system, the rose above became known as Rosa canina. In 1753, he published his Species Plantarum, a book containing the binomial names of nearly 6,000 plants.

Binomial classification

This binomial name emerges from the system which scientists use today to classify organisms. The classification starts with domains – Bacteria, Archaea (organisms which look like bacteria but which have rather different cellular processes), and Eukarya (organisms which have cells with a nucleus). Within the Eukarya, the most well-known kingdoms are Plants, Animals and Fungi; within kingdoms the classification continues, with levels of increasing specificity featuring phylum, class, order, family, genus (plural genera) and species. The species name of every organism contains the genus followed by a descriptive specific epithet which distinguishes the species from others in the genus– for example, humans are designated Homo sapiens (genus Homo, species Homo sapiens).

What is a species?

In the animal kingdom, a species is often defined as a group of animals which can breed together and produce fertile offspring. While this is generally the case, there exist relatively rare examples of fertile inter-species crosses in artificial environments.

In the plant kingdom, matters get much more complicated! Fertile inter-species hybrids are relatively common, and plants which are sexually infertile can reproduce asexually by rooting stems or sending out suckers. Indeed asexual clonal reproduction can also occur through the production of seeds without fertilisation, a phenomenon known as apomixis. It is even possible for a relatively infertile hybrid to produce fertile offspring by crossing with another plant. Today, there are various different definitions of what constitutes ‘a species’, combining reproductive isolation, ecological niches and DNA evidence, amongst others.

Speciation is characterised by the evolution of barriers to genetic exchange between previously interbreeding populations. Barriers include pollinator preferences and ecogeographic separation. Plants provide extraordinary opportunities for studying speciation. Flowering plants are especially rich in species (over 400 000 species described to date), trailing only insects in named species diversity. Much of this diversification has occurred recently, creating spectacular examples of adaptive radiation and of speciation in action.

Although speciation often takes place over long timescales, in plants it can happen in a matter of one or two generations through what is known as polyploid hybrid speciation. This happens when parental plants make mistakes when they create their gametes (analogous to our sperm and eggs). Instead of making gametes with only one copy of each chromosome (normally done through a process called meiosis), they create gametes with two or more, a state called polyploidy. In animals this would usually lead to death of the organism. Polyploidy can drive speciation when the newly arisen polyploid hybridises with another polyploid plant species. This is a relatively common form of speciation in plants and was involved in the evolution of wheat.

New plant species are arising all the time. Climate change and other environmental changes will accelerate speciation rates, but these are unlikely to outpace concurrent extinction rates.

Plants on the Trail

Black Pine

Black Pine

Pinus nigra
Common Beech

Common Beech

Fagus sylvatica
Hau kuahiwi

Hau kuahiwi

Hibiscadelphus distans
Orchids

Orchids

Orchidacaeae
Lord Howe Island Palms

Lord Howe Island Palms

Howea sp.
Monkeyflowers

Monkeyflowers

Mimulus sp.
Maize

Maize

Zea mays
Whitebeams and Rowans

Whitebeams and Rowans

Sorbus sp.
Roses

Roses

Rosa 'Cantab'
Sweet Vernal Grass

Sweet Vernal Grass

Anthoxanthum odoratum
Common Toadflax

Common Toadflax

Linaria vulgaris
Taiwanese Trident Maple

Taiwanese Trident Maple

Acer buergerianum var. formosanum
University of Cambridge Museums and Botanic Garden

Social

  • Follow us on YouTube
  • Follow us on Twitter
  • Follow us on Instagram
  • Follow us on Facebook
  • Follow us on Threads
  • Follow us on LinkedIn

© 2025 Cambridge University Botanic Garden

  • Privacy policy
  • Contact us